Geometria Plana (História)


Para se chegar à compreensão da necessidade de classificação de figuras, da forma como é usual na Geometria Euclidiana, é necessário obter compreendido as suas vantagens matemáticas. Sem esta compreensão, parece um jogo de palavras ter ouvido o professor afirmar que um triângulo isósceles é o que tem os lados iguais, e depois ver o professor permitir que um triângulo com os três lados iguais seja também isósceles. Só após o conhecimento de algumas propriedades das figuras é que os alunos compreenderão as vantagens de optar por uma classificação.

Vamos optar por apresentar os diversos tipos de figuras em separado apenas por uma razão de "arrumação".

Chamamos polígonos a qualquer porção do plano limitada por segmentos de reta que forma uma linha poligonal fechada.


Geometria Plana

A Geometria permite que façamos uso dos conceitos elementares para construir outros objetos mais complexos como: pontos especiais, retas especiais, planos dos mais variados tipos, ângulos, médias, centros de gravidade de objetos, etc.
Polígono

Polígono: É uma figura plana formada por três ou mais segmentos de reta que se intersectam dois a dois. Os segmentos de reta são denominados lados do polígono.Os pontos de intersecção são denominados vértices do polígono. A região interior ao polígono é muitas vezes tratada como se fosse o próprio polígono.

Triângulos

Os triângulos são polígonos de três lados. Iremos classificar os triângulos de duas maneiras: quanto aos lados e quanto aos ângulos.

Quanto aos lados:

Equilátero - todos os lados iguais
Isósceles - dois lados iguais
Escaleno - todos os lados diferentes

Quanto aos ângulos:

Acutângulo - Um ângulo agudo
Obtusângulo - Um ângulo obtuso
Retângulo - Um ângulo reto

Algumas propriedades:

- Se o triângulo tem dois lados iguais, os ângulos que lhes são opostos também são iguais.
- Num triângulo, ou em triângulos iguais, a lados iguais opõem-se ângulos iguais.
- Num triângulo, ou em triângulos iguais, a ângulos iguais opõem-se lados iguais.
- Num triângulo, ao maior lado opõem-se o maior ângulo

Os triângulos podem ser classificados em diversos tipos de acordo com seus lados(Eqüiláteros - Possuem três lados de mesmo comprimento, Isósceles - possuem dois lados de mesmo comprimento e Escalenos - possuem três lados de comprimentos diferentes) ou quanto a seus ângulos(Retângulos - possuem um ângulo de 90° graus, também chamado ângulo reto, Obtusângulos - possuem um ângulo obtuso, ou seja, um ângulo com mais de 90°, Acutângulos - possuem três ângulos agudos, ou seja, menores do que 90°). Polígonos são definidos como a figura formada po um número n maior ou igual a 3 de pontos ordenados de forma que três pontos consecutivos sejam não colineares.

Um exemplo de polígono de 3 lados é um triângulo. Os polígonos possuem denominações particulares para enes diferentes:n=3 - triângulo, n=4 - quadrilátero, n=10 - decágono, n=20 - icoságono). Estas denominações são derivadas dos nomes dos números em grego. Outra forma importante da geometria plana é a circunferência definida como sendo o conjunto de todos os pontos de um plano cuja distância a um ponto fixo desse plano é uma constante positiva. Chamamos de círculo ao conjunto de uma circunferência e seus pontos internos. Existem também certos casos especiais para quadriláteros como definiremos a seguir: é dado o nome de trapézio a um quadrilátero que possui dois lados paralelos. Para o caso dos lados não paralelos serem congruentes dá-se a este trapézio o nome de trapézio isósceles, para o caso de lados não paralelos não congruentes é dado o nome de trapézio escaleno, e um trapézio que possui um lado perpendicular as bases é chamado trapézio retângulo. Paralelogramo é um quadrilátero que possui os lados opostos paralelos. Retângulo possui quatro ângulos congruentes entre si. O losango possui quatro lados congruentes entre si, e finalmente o quadrado que possui 4 lados e quatro ângulos congruentes entre si.

Polígono convexo: É um polígono construído de modo que os prolongamentos dos lados nunca ficarão no interior da figura original. Se dois pontos pertencem a um polígono convexo, então todo o segmento tendo estes dois pontos como extremidades, estará inteiramente contido no polígono.

Polígono não convexo: Um polígono é dito não convexo se dados dois pontos do polígono, o segmento que tem estes pontos como extremidades, contiver pontos que estão fora do polígono.



Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.



Paralelogramo: É um quadrilátero cujos lados opostos são paralelos. Pode-se mostrar que num paralelogramo:

Os lados opostos são congruentes;
Os ângulos opostos são congruentes;
A soma de dois ângulos consecutivos vale 180o;
As diagonais cortam-se ao meio.




Losango: Paralelogramo que tem todos os quatro lados congruentes. As diagonais de um losango formam um ângulo de 90o.

Retângulo: É um paralelogramo com quatro ângulos retos e dois pares de lados paralelos.


Quadrado: É um paralelogramo que é ao mesmo tempo um losango e um retângulo. O quadrado possui quatro lados com a mesma medida e também quatro ângulos retos.

Trapézio: Quadrilátero que só possui dois lados opostos paralelos com comprimentos distintos, denominados base menor e base maior. Pode-se mostrar que o segmento que liga os pontos médios dos lados não paralelos de um trapézio é paralelo às bases e o seu comprimento é a média aritmética das somas das medidas das bases maior e menor do trapézio.


Trapézio isósceles: Trapézio cujos lados não paralelos são congruentes. Neste caso, existem dois ângulos congruentes e dois lados congruentes. Este quadrilátero é obtido pela retirada de um triângulo isósceles menor superior (amarelo) do triângulo isósceles maior.

Nenhum comentário:

Postar um comentário